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Abstract: Image processing is one of the most important and widely used techniques in the medical 

field. Magnetic Resonance Imaging (MRI) can provide diagnostic images with high contrast and high 

resolution, especially for low-density tissue. Therefore, applications to support tumor prediction are 

researched and developed. In this paper, we applied artificial intelligence to identify and detect tumors 

and use the UNET++ deep learning model, which achieved results with a recognition rate of about 

80%. The results for a great deal of built-in functionality in the built-in physician support software 

system in practice. 
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I. INTRODUCTION 

Magnetic Resonance Imaging (MRI) is a 

diagnostic imaging technique commonly used in 

medical imaging. MRI research has been 

conducted since the 1940s, and the first clinical 

MRI images were taken in the 1980s. MRI 

images show a higher contrast of soft tissue than 

CT images. Therefore, MRI is especially useful 

in diagnosing issues involving the nervous 

system, such as the brain, spine, and knee joints 

[1]. Clinical MRI imaging is commonly used to 

explore brain structure, evaluate brain lesions, 

and identify neurological disorders such as 

Alzheimer's disease and multiple sclerosis [2, 3]. 

In addition, MRI images are also commonly 

used to conduct radiosurgery planning in treating 

brain cancer [4]. 

Image segmentation is an essential task 

in imaging diagnosis and disease treatment. 

The purpose of segmentation is to group pixels 

with the same properties into a group, from 

which agencies and organizations present in 

the diagnostic image can be segregated 

separately. Through image segmentation, 

radiologists can detect abnormalities and 

lesions for diagnosis, treatment planning as 

well as evaluation of treatment results [5]. 

Image segmentation is a complex task, and the 

quality of the segmentation process is highly 

dependent on the image quality, image type, 

and complex structure of the captured image. 

The segmentation of magnetic resonance 

images is a complicated task. Factors that 

influence the precision of the segmentation 

process are the electronic noise of image 

acquisition, the bias field (characterized by 

smooth changes in intensity within tissue), and 

the partial volume effect due to the intensity of 

a voxel contributed by various tissue types. 
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Image segmentation is divided into three 

main methods: manual segmentation, semi-

automatic segmentation, and automatic 

segmentation. Manual segmentation is 

performed entirely by experienced radiologists. 

The manual segmentation process is highly 

time-consuming and has many subjective errors 

because of radiologist fatigue in the diagnostic 

process. With the development of computer 

science and technology, automatic and semi-

automatic segmentation methods have been 

deployed to assist doctors in shortening the 

diagnosis time and reducing errors in the 

diagnosis process. 

Semi-automatic and automatic 

segmentation tasks are divided into two main 

methods: classical computer vision approaches 

and artificial intelligence (AI) - based 

techniques. Numerous research groups have 

implemented image segmentation using the 

classical computer vision method for a long 

time. The typical techniques commonly used 

are the automatic thresholding method, edge 

detection method, edge capture method, 

statistical segmentation, and regional growth 

segmentation method [6-10]. In recent years, 

with the development of data science and 

artificial intelligence, computers have been 

increasingly used in medical imaging [11]. 

Research groups apply many machine-learning 

techniques to classify and segment MRI 

images. Traditional machine learning 

techniques often have low performance with 

big datasets and complex structured images 

[12], which makes it difficult to detect 

anomalies and perform automatic segmentation 

accurately. The limitations of traditional 

machine learning methods can be improved 

using deep learning methods. Deep learning 

methods can be used for quantitative analysis of 

MRI images through self-learning of features 

contained in the images. With the rapid 

development of CNN networks, deep learning 

shows potential in the automatic analysis of 

medical images [13, 14]. The modern CNN 

model is increasingly improved to give it the 

ability to segment images with high accuracy 

[15, 16]. 

There is currently no standard MRI 

dataset in Vietnam to train deep learning models. 

Due to domestic MRI imaging equipment's 

characteristics, most brain MRIs used in 

hospitals are T1 images. At the same time, the 

training dataset available worldwide includes 

other types of MRI images, such as T2 and 

FLAIR. Therefore, it is impossible to directly 

use models trained with international datasets for 

segmentation of MRI images at domestic 

hospitals. Therefore, this research aims to build 

an automated brain tumor segmentation program 

from magnetic resonance imaging using the 

UNET++ deep learning model [16]. The trained 

model is capable of segmenting MRI images 

collected at hospitals in Vietnam; the model can 

assist doctors in the treatment planning of brain 

cancer radiosurgery. 

II. SUBJECTS AND METHODS 

A. Data 
 

The training dataset used in this study is 

the data in the BraTS2020 dataset [17-19] 

combined with the MRI data collected at Bach 

Mai Hospital. The BraTS2020 dataset contains 

brain MRI slices of 369 patients; each patient's 

data includes four image types: native (T1), 

post-contrast T1-weighted (T1Gd), T2-

weighted (T2) and T2 Fluid Attenuated 

Inversion Recovery (T2-FLAIR). The dataset is 

manually segmented by one to four experienced 

radiologists. The tumors of patients in the 

dataset were classified and annotated into three 

groups: enhancing tumors (ET), peritumoral 

edematous tissue (ED), and core necrotic tumor 
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- necrotic tumor core (NRC). MRI data from 

Bach Mai Hospital includes DICOM files 

containing brain MRI slices. Most MRI images 

used for radiosurgery planning at Bach Mai are 

T1 images containing markers and the skull in 

each slice. Since the data in radiotherapy 

planning is only T1 images, we only took T1 

images from the BraTS2020 and Bach Mai's 

datasets to combine into the training dataset for 

this study. To homogenize the images from the 

BraTS2020 and Bach Mai's datasets, we 

performed image processing to remove the 

marker and skull present in the image.  
 

The training dataset is also processed to 

reduce overfitting using a technique called 

data augmentation. Data augmentation 

techniques used include Biased crop (random 

cropping of data with probability 0.4), Flips 

(flip the image along X and Y axes with 

probability 0.5), Gaussian Noise (add 

Gaussian noise with mean zero and standard 

deviation uniformly sampled in the range [0, 

0.33] with probability 0.15), Gaussian Blur 

(add Gaussian blurring with mean zero and 

standard deviation uniformly sampled in the 

range [0.5, 1.5] with probability 0.15) and 

Brightness (brightness is adjusted randomly 

between 0.7 and 1.3 with probability 0.15). 
 

The dataset we obtained from Bach Mai 

Hospital consists of 100 T1 images from 100 

distinct patients. The BraTS2020BachMai 

dataset utilized in this study is T1 imaging data 

from 469 different patients after 

homogenization with the BraTS2020 and other 

data processing. For district training, we used 

data from 251 patients, 59 patients for the test 

set, and 159 patients for the validation set (val). 

B. Model 

UNET++ has been proven to be more 

efficient and achieves significantly more 

excellent performance than UNET by 

redesigning lines that eliminate the connection 

between the encoder and decoder sub-networks 

[16]. Figure 1 depicts the structure of the 

UNET++ network; compared to the UNET 

network, UNET++ adds up-sampling blocks at 

each down-sampling layer on the encoder sub-

network (backbone), forming a dense 

convolutional block instead of just having skip 

pathways between the encoder and the decoder 

sub-network as in UNET. A concatenation layer 

is placed before each convolution block in the 

dense convolution to fuse the output of the 

previous convolutional layer with the 

corresponding up-sampling output of the lower 

dense block. The redesign of the skip 

connection paths makes the semantic level of 

the feature map on the encoder and decoder 

more proportional. Therefore, the optimizer can 

quickly identify whether the feature map from 

the encoder and decoder is semantically similar 

or not. We can calculate the output xi, j of node 

Xi, j where i is the index of the down-sampling 

layer and j is the index of the convolutional 

layer, as follows [16]: 
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(1) 

Where H(.) is the convolution operator 

associated with the activation function, U(.) is 

the up-sampling operator, and [] stands for the 

association class. From Figure 1, we can see 

that nodes with j = 0 receive only one input 

from the previous layer on the encoder, nodes 

with j = 1 have two inputs, both inputs are from 

the encoder, and nodes with j > 1 have j +1 

input, where j input is the output of previous 

nodes on the same connection skipping path, 

and one input is the result of up-sampling the 

lower layer on the encoder. 

The workflow for the brain MRI image 

segmentation program is shown in Figure 2. 
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Fig. 1. The architecture of UNET++ [16] 

 

 
Fig. 2. The workflow for the brain MRI image segmentation program 

C. Performance Metrics 

During the training process, the model 

always tries to change its internal parameters to 

recognize and analyze the input data. The weight 

change process is done based on the gradient 

descent algorithm. The loss function is a valuable 

tool to evaluate the learning ability of the model 

with the suitable weights. The loss function is 

essential in making the learning process more 

efficient when an appropriate weight is found. 

For UNET++ networks, the Focal Tversky Loss 

function has been shown to perform best when 

segmenting lesions [17]. The Focal Tversky Loss 

function of the object labeled x is described in the 

following formula [17]. 
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(2) 

In this paper, we use two evaluation tools, 

namely the Dice Coefficient and the IoU 
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(Intersection over Union) coefficient, to evaluate 

the performance and accuracy of the trained 

model. The dice coefficient is used to evaluate 

the similarity of two samples widely used in 

image processing recognition and is expressed 

as a formula [18]. 

22
DSC =  

2

X YTP

TP FP FN X Y


  
 (3) 

The IoU coefficient is a coefficient that 

quantifies the degree of overlap between the 

prediction result and the diagnostic result, 

expressed in the form of the formula [18]. 

X Y
IoU

X Y
  (4) 

Where |X| and |Y| are the tumor 

segmented by model and the ground truth 

segmented by physician, respectively. TP, FP, 

and FN are true positives (TP), false positives 

(FP), and false negatives (FN), respectively. 

III. RESULTS AND DISCUSSION 

A. Results 

Figures 3 and 4 show the results of 

preprocessing the training data. The MRI 

data collected from Bach Mai Hospital had 

the skull removed to create similarities with 

the data in the BraTS2020 dataset (Figure 3). 

After the skull stripping, the entire data will 

be augmented with the results shown in 

Figure 4. 

 

Fig. 3. The results of skull stripping from  

Bach Mai’s dataset 

 

 

Fig. 4. Results of data augmentation of the training dataset 
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Figures 5, 6, and 7 depict the values of 

the loss function, the value of the DICE ratio, 

and the IoU value of the trained model with the 

newly processed dataset. 

Figures 8 and 9 show the 

segmentation results of the trained model 

for test data (untrained data) in the 

BraTS2020 dataset and data collected from 

Bach Mai Hospital. 

Table I compares the segmentation 

results of our model with some popular 

segmentation models. 

 
Fig. 5. Loss function (loss function) of the training process on the training (train) and validation (val) sets 

 
Fig. 6. Dice coefficient ratio of the trained model on the training (train) and validation (val) sets 

 
Fig. 7. The IoU value of the trained model on the training (train) and validation (val) sets 

 

1  
Fig. 8. The segmentation result of the tumor with the BraST2020 test dataset 

 

 
Fig. 9. The segmentation result of the tumor in Bach Mai’s dataset 



BUI NGOC HA et al. 

7 

 

Table I. Comparison of brain tumor segmentation results for some models 

Model DICE Score IoU 

UNET [15] 0.870 0.795 

ResU-Net [20] 0.873 0.792 

AGResU-Net [22] 0.876 0.810 

UNET++ (our) 0.871 0.792 
 

B. Discuss 

The results from Figure 3 show that the 

skull stripping tool we used can completely 

remove the skull cortex as well as the eye tissue 

while preserving the entire structure of the 

cerebral hemispheres. After the skull stripping 

process, the data collected from Bach Mai 

Hospital became similar to the data in the 

BraTS2020 dataset. 

Figure 4 presents the outstanding results 

of eight processing techniques to augment the 

data and eliminate the effect of overfitting 

during training. In addition to the basic data 

augmentation techniques commonly used when 

training conventional segmentation models, 

data augmentation techniques such as bias 

transform, random ghosting, random spike, and 

random bias field were used to simulate the 

actual artifact during the acquisition and 

reconstruction of MRI. Through data 

augmentation, the efficiency of the training 

process can be improved, and the model is 

made better to be able to segment the actual 

magnetic resonance images. 

From the training results shown in 

Figures 7, 8, and 9, it can be seen that that the 

loss function value of the model decreases 

quickly in the first 40 epochs, then the rate of 

change slows down. From epoch 80 to epoch 

100, the value of the loss function decreases 

slowly. In the epoch range from 80 to 100, the 

DICE and IoU ratio values still increase, but 

their values do not change significantly. Thus, 

from 80 to 100 epochs can be used to train the 

model optimally. If the number of epochs, 

continues increasing, the training time will 

become very long while the model does not 

learn much. The trained model has the highest 

DICE ratio and the highest IoU value of 0.87 

and 0.79, respectively. Thus,  it is clear that the 

model can identify and segment tumors well 

from T1 magnetic resonance images. 

Figure 9 shows the resulting segmentation 

image of the patient's brain tumor from the T1 

MRI scheduled for radiosurgery at Bach Mai 

Hospital. The original tumor is the tumor 

segmented by the doctor, predicted tumor is the 

tumor segmented by our model. Basically, the 

tumor is segmented by the model having a 

similar location and shape to the tumor 

segmented by the radiologists; some healthy 

tissue in the brain is mistakenly segmented as a 

tumor. The total number of mislabeled and 

mistakenly segmented pixels is 20% less than 

the number of pixels in the ground truth, which 

is a poor number for the automatic segmentation 

model. However, if the model is used as a 

support tool, it can support the doctor quite well 

in the radiosurgery planning process. By using 

the model to preliminary segment brain tumors, 

radiologists only need to adjust the segmented 

tumor from the trained model instead of 

manually segmenting as before. Radiotherapy 

planning time will be shortened when the doctor 

uses the tumor segmentation model. Therefore, 

the doctor can focus on other work to improve 

the quality of the radiosurgery process. 

Table I shows the predicted tumor of 

our model on the BraTS2020 dataset 

combined with the Bach Mai dataset 
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compared with other models using only the 

BraTS dataset. The segmentation model in 

this research that is trained with T1 images 

has a slightly lower segmentation precision 

than other trained models using all three 

types of MRIs (T1, T2, and FLAIR). The 

difference in segmental precision between our 

model and other models is trivial; it can be 

said that our model works well with a dataset 

consisting of only T1 images. 

IV. CONCLUSION 

In this research, we have successfully 

built a brain tumor segmentation model from 

T1 magnetic resonance imaging. The Focal 

Tversky Loss function was chosen to evaluate 

the training quality of the model because it 

gives the best performance in identifying the 

lesions. We built a program to remove the skull 

in the MRI images from Bach Mai to fuse the 

Bach Mai hospital and BraTS2020 datasets. 

The actual image segmentation results show 

that our model can accurately segment brain 

tumors. The model can be used to assist 

radiologists in the diagnostic process as well as 

in brain radiosurgery planning. 

The training results of our model are 

slightly lower than those of models constructed by 

other research teams. The cause of this problem is 

that our model only uses T1 images for the 

training process, while the training datasets of 

other models include both T1 and T2 images as 

well as FLAIR images. In the future, we will 

customize and expand the model's structure and 

collect more data for the training dataset to further 

improve our model's performance. As a premise 

of this research, we hope that, with future 

improvements, it will make the brain tumor 

segmentation model and, more broadly, imaging 

diagnostics based on the deep learning approach, 

practical in clinical application. 
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