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Abstract: Accurate prediction of two-phase parameters is essential for the development, operation 

and safety of nuclear power plants. In this paper, the ANN-based model has been developed, 

implemented with PDE (Partial Differential Equation) solver in case study of two-phase frictional 

pressure drop prediction. 
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I. INTRODUCTION 

The main drawback of empirical 

correlations in thermal-hydraulics system codes 

is that the prediction capability heavily relies on 

the quality of the data and vastness of the 

experimental data employed in the study. 

Previous authors indicated that most of the 

empirical correlations give poor prediction 

when they are used beyond the range of data 

that they were developed [1-2]. Fortunately, the 

ANN is a powerful machine learning tool for 

modeling and solving some complicated 

physical problems that cannot be described with 

simple mathematical models, and thus can be 

able to cope with the uncertainty issues and 

replace the traditional methods of modeling and 

simulations. Many investigators proposed 

ANN-based model and demonstrated the 

predictive capability of the model [3-8]. 

However, these studies have only stopped at 

building predictive models on the basis of 

experimental data, not yet integrated into the 

thermal-hydraulics analysis code. Therefore, in 

a long-term research program to improve the 

accuracy and reliability of the safety analysis 

methods of nuclear reactors at Hanoi University 

of Science and Technology (HUST), we have 

developed a method of integrating data-driven 

and machine learning models with a 1-D 

system-level computing program on the basis of 

the following two basic modules: (1) 

experimental data analysis and predictive model 

development based on experimental data; (2) 

code development module based on 

conservation equations using the finite volume 

element method. 

In this paper, we present some results in 

the construction of two basic modules, thereby 

testing and evaluating a case study of building 

an ANN-based wall friction model using 

module (1) and integrating into the calculation 

program in module (2). It should be noted that 

the two-phase wall friction model, which 

describes frictional pressure drop for a two-

phase flow, is one of the key elements in the 

constitutive equations of a system code.  
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II. FRAMEWORK FOR DATA-

DRIVEN MODEL DEVELOPMENT 

A framework to construct an ANN-based 

model with wide-range collected data from 

literature has been developed at HUST. With 

the specific problem of two-phase flow, the 

input and output parameters must be 

determined in advance, and then the database 

will be collected from existing experimental 

database to optimize the ANN structure and 

develop ANN-based model. A comprehensive 

workflow for ANN framework is proposed 

which consists of several main steps as 

illustrated in Figure 1 [9]. 

 

Fig. 1. The ANN Method Workflow [6] 

III. CODE STRUCTURE DEVELOPMENT 

Following code architecture and 

methodology of mature system and CFD codes 

such as RELAP5 [10], MARS [11], and 

EAGLE [12], a basic pilot EAGLE 1-D code 

for one-dimensional, transient, two-fluid model 

has been developed to solve averaged 

conservation equations and constitutive 

relations for k (phase fraction), Uk (phase 

velocities), and hk (phase enthalpies) with Finite 

Volume Method (FVM) and the semi-implicit 

SMAC numerical scheme in a “non-staggered” 

grid as shown in Figure 2. 

 

 

Fig. 2. Pilot code structure (a) & algorithm (b) 
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Firstly, the explicit Euler method is the 

simplest method in which all the fluxes and 

sources are evaluated using known values at an 

earlier time step n. The discretized momentum 

equations were then solved using the pressure 

pn and phase velocities 𝜙𝑘
𝑛  to find p* and 𝜙𝑘

∗  

where the values with superscript * do not 

satisfy the mass conservation equations. 

Finally, the velocities and pressure were 

corrected at time step n+1 based on the mass 

conservation equations and the calculation 

process is advanced to the new time step. 

IV. A CASE STUDY OF WALL 

FRICTION MODEL 

Wall friction models predict the amount 

of friction between the wall and each phase of 

the fluid, and that are needed to solve the 

momentum conservation equations 1 and 2 as 

shown below: 

𝛼𝑔𝜌𝑔
𝜕𝑈𝑔

𝜕𝑡
+
1

2
𝛼𝑔𝜌𝑔

𝜕𝑈𝑔
2

𝜕𝑥
= −𝛼𝑔
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𝜕𝑥
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Γ𝑔(𝑈𝑔𝑖 − 𝑈𝑔) − 𝛼𝑔𝜌𝑔𝐹𝐼𝐺(𝑈𝑔 − 𝑈𝑓) − 
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Γ𝑔(𝑈𝑓𝑖 − 𝑈𝑓) − 𝛼𝑓𝜌𝑓𝐹𝐼𝐹(𝑈𝑔 − 𝑈𝑓) −
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Where 𝛤𝑘  is the rate of a phase change 

for the k phase, 𝜌𝑚 is a mixture density defined 

as 𝜌𝑚 = 𝛼𝑓𝜌𝑓 + 𝛼𝑔𝜌𝑔, FWG and FWF are part 

of the wall frictional drag, FIG and FIF are part 

of the interface frictional drag. 

In RELAP5, the two-phase wall friction 

model is based on a two-phase multiplier 

approach calculated from the Heat Transfer and 

Fluid Flow Service (HTFS)-modified Baroczy 

correlation [10] and the wall friction of each 

phase are calculated based on two-phase wall 

friction as follows: 

𝛼𝑔𝜌𝑔𝐹𝑊𝐺(𝑈𝑔) = 𝛼𝑔 (
𝑑𝑝

𝑑𝑥
)|
2𝜙

(
1

𝛼𝑔+𝛼𝑓𝑍
2) (3) 

𝛼𝑓𝜌𝑓𝐹𝑊𝐺(𝑈𝑓) = 𝛼𝑓 (
𝑑𝑝

𝑑𝑥
)|
2𝜙

(
𝑍2

𝛼𝑔+𝛼𝑓𝑍
2) (4) 

Where Z is the ratio of the phasic shear 

stresses and phasic wetted perimeters 

With ANN approach, experimental 

databases are used in the training process in 

which the weights (W) and biases (B) are 

modified to attain better approximation of the 

desired output (Figure 3).  

 

Fig. 3. ANN-based model 
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The two-phase flow phenomena are 

primarily governed by the flow boundary 

conditions as well as the geometry of the flow 

domain, therefore these key parameters must be 

selected as inputs for ANN structure design and 

optimization. Nine key parameters of flow 

boundary conditions including hydraulic 

diameter (D), mass flux (G), flow quality (x), 

phase velocities ( 𝑈𝑔 , 𝑈𝑓) , phase viscosities 

(𝜇𝑔, 𝜇𝑓)  and phase densities (𝜌𝑔, 𝜌𝑓)  are 

chosen as input variables of ANN. 

Consequently, the following relation for 

independent input variables and dependent 

output has been developed as below equation: 

(
𝑑𝑝

𝑑𝑥
)|
2𝜙

= 

𝑓(𝑈𝑔, 𝑈𝑓 , 𝐷, 𝐺, 𝑥, 𝜌𝑔, 𝜌𝑓 , 𝜇𝑔, 𝜇𝑓) (5)  

In this case-study work, 604 experimental 

data points of frictional pressure drop in air–

water two-phase flows in horizontal pipes are 

used for training and testing the ANN model 

(Table I). The data is collected and randomly 

divided into two parts based on practical 

experience: 75% is used for training and 25% is 

used for testing. Each of these models has its 

weights and biases initialized using Nguyen-

Widrow method [13] and its subsequently 

trained with the Levenberg-Marquardt algorithm 

[14]. To avoid "overfitting", the training process 

will be stopped early after a certain number of 

epochs, this method is called early stop training. 

The overfitting occurs when the model produces 

high accurate results on the training set but does 

not work well on the testing set; in other words, 

the model is not generalizable [15]. After the 

process of selecting, comparing, and balancing 

training performance and time, the employed 

ANN configuration to predict the frictional 

pressure drop gradient in this study is four 

hidden layers with the number of neurons in 

each layer as folows (9-80-50-1). The 

coefficients R-Test and R-All are 0.9991 and 

0.9983, consecutively, showing that the ability to 

predict the frictional pressure drop gradient of 

the ANN is quite accurate. And then the weights 

(W) and biases (B) of ANN network are 

extracted and implemented in the EAGLE 1-D 

code for the frictional pressure drop gradient 

terms. For each control volume in EAGLE 1-D 

code, nine input parameters as well as the 

pressure gradient are calculated based on 

volume-averaged approach. 

Table I. Experimental database for ANN-based model development 

Authors jf (m/s) jg (m/s) D(mm) 

Lu et al. (2018) [16] 2.0-6.0 0.07-2.78 38.1 

Lu et al. (2018) [16] 2.0-4.0 0.08-2.85 50.8 

Lu et al. (2018) [16] 4.0-6.0 0.10-0.32 101.6 

Badie et al. (2000) [17] 0.0-0.047 14.51-25.34 78 

Shannak (2008) [18] 0.06-0.70 0.0-32.39 52.5 

Ottens (2001) [19] 0.0045-0.0151 4.48-15.94 52 

Sun (2023) [20] 0.096-1.70 0.1-8.0 20 

Hamad et al. (2017) [21] 0.29-1.32 0-0.51 25.4 

Hamad et al. (2017) [21] 0.58-2.34 0-0.9 19.05 

Hamad et al. (2017) [21] 1.17-5.27 0-2.02 12.7 

Triplett (1999) [22] 0.043-6.02 0.058-70.16 1.097 

Triplett (1999) [22] 0.023-3.02 0.042-66.00 1.447 
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Figure 4 shows the nodalization scheme 

for for RELAP5 (staggered grid) and EAGLE 

1-D (non-staggered grid) simulations of Lu et 

al. (2018) Experiments. After carrying out 

grid sensitivity study, the appropriate number 

of control volume is 100. In this experiment, 

a differential pressure transducer with an 

accuracy of ± 0.1% is connected to the two 

instrumentation ports in the test section 

through two flexible plastic tubes to directly 

measure the pressure difference. Therefore, 

the pressure difference between two control 

volumes which cover two instrumentation 

ports are used for comparison. Results in 

Table II have demonstrated the capability of 

data-driven model integrated in the system 

code to improve the accuracy of the 

prediction results. 

 

Fig. 4. Nodalization schemes 

Table II. Experimental database for ANN-based model development 

jf 

(m/s) 

jg  

(m/s) 
D(mm) 

dP/dz (Pa/m) 

EXP RELAP5 1-D EAGLE with ANN-based Model 

6 0.0776 38 6952 6725 6852 

6 0.1308 38 7058 6832 6885 

6 0.2607 38 7287 7068 7201 

6 0.5000 38 7638 7383 7583 

6 0.8692 38 8237 8064 8122 

5 0.0945 38 5013 4903 5073 

5 0.1499 38 5058 5007 5106 

5 0.2942 38 5240 5104 5198 

5 0.5154 38 5500 5322 5402 

5 0.8824 38 6006 5803 5956 

4 0.1011 38 3382 3122 3306 

4 0.1719 38 3442 3247 3322 

4 0.3056 38 3563 3403 3506 

4 0.4600 38 3870 3699 3769 

4 0.9235 38 4313 4132 4207 

 

V. CONCLUSIONS 

A method of integrating data-driven 

and machine learning models with a 1-D 

system-level computing program has 

demonstrated good prediction capability of 

pressure drop. 
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