Thermodynamic Hadron-Quark Phase Transition of Chiral Nuclear Matter at High Temperature
Main Article Content
Abstract
Based on the extended Nambu-Jona–Lasinio (NJL) model with the scalar-vector eightpoint interaction [15], we consider what ultimately happens to exact chiral nuclear matter as it is heated. In the realm of very high temperature the fundamental degrees of freedom of the strong interaction, quarks and gluons, come into play and a transition from nuclear matter consisting of confined baryons and mesons to a state with ‘liberated’ quarks and gluons is expected. In this paper, the hadron-quark phase transition occurs above a limited temperature and after the chiral phase transition in the nuclear matter. There is a so-called quarkyonic- like phase, in which the chiral symmetry is restored but the elementary excitation modes are nucleonic at high density, appears just before deconfinement.
PACS: 21.65.-f, 21.65.Mn, 11.30.Rd, 12.39.Ba, 25.75.Nq, 68.35.Rh
Article Details
Keywords
Nuclear matter, Equations of state of nuclear matter, Chiral symmetries, Bag model, Quark-gluon plasma, Quark deconfinement, Equilibrium properties near critical points, Phase transitions and critical phenomena
References
[2] J. C. Collins and M. J. Perry, Phys. Rev. Lett. 34 (1975) 1353
[3] K. Fukushima and T. Hatsuda, Rep. Prog. Phys. 74 (2011), 014001.
[4] T. Schaefer, arXiv:0509068; P. Braun-Munzinger and J. Wambach, Rev. Mod. Phys. 81 (2009) 1031.
[5] B. D. Serot and J. D. Walecka, Advances in Nuclear Physics, Vol.16, eds. J. W. Negele and E. Vogt (Plenum, New York, 1986).
[6] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122 (1961), 345; ibid. 124 (1961), 246.
[7] S. P. Klevansky, Rev. Mod. Phys. 64 (1992), 649; T. Hatsuda and T. Ku- nihiro, Phys. Rep. 247 (1994), 221.
[8] M. Buballa, Phys. Rep. 407 (2005), 205.
[9] W. Bentz and A. W. Thomas, Nucl. Phys. A 693 (2001), 138.
[10] Tran Huu Phat, Nguyen Tuan Anh, and Le Viet Hoa, Nucl. Phys. A772 (2003), c548.
[11] Tran Huu Phat, Nguyen Tuan Anh, Nguyen Van Long, and Le Viet Hoa, Phys. Rev. C76 (2007), 045202.
[12] Tran Huu Phat, Nguyen Tuan Anh, and Nguyen Van Long, Phys. Rev. C77 (2008), 054321.
[13] V. Koch, T. S. Biro, J. Kunz, and U. Mosel, Phys. Lett. B 185 (1987), 1. [14] Tran Huu Phat, Nguyen Tuan Anh, and Dinh Thanh Tam, Phys. Rev. C84 (2011), 024321.
[15] Nguyen Tuan Anh and Dinh Thanh Tam, Phys. Rev. C84 (2011), 064326. [16] A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf, Phys. Rev. D9 (1974), 3471.
[17] G. F. Burgio, M. Baldo, P. K. Sahu, A. B. Santra, and H.-J. Schulze, Phys. Lett. B526 (2002) 19; G. F. Burgio, M. Baldo, P. K. Sahu, and H.-J. Schulze, Phys. Rev. C66 (2002) 025802.
[18] O. E. Nicotra, M. Baldo, G. F. Burgio, and H.-J. Schulze, Phys. Rev. D74 (2006) 123001.
[19] U. Heinz, P. R. Subramanian, H.St¨ocker, and W. Greiner, J. Phys. G12 (1986) 1237; J. Cleymans and E. Suhonen, Z. Phys. C37 (1987) 51; H. Kouno and F. Takagi, Z. Phys. C42 (1989) 209; B. M. Waldhauser, D. H. Rischke, J. A. Maruhn, H. St¨ocker, and W. Greiner, Z. Phys. C43 (1989) 411; Q.-R. Zhang and H.-M. Liu, Phys. Rev. C46 (1992) 2294; Bo-Qiang Ma, Qi-Ren Zhang, D. H. Rischke, W. Greiner, Phys. Lett. B315 (1993) 29.
[20] D. H. Rischke, Y. Puersuen, J. A. Maruhn, Nucl. Phys. A595 (1995) 383; Erratum-ibid. A596 (1996) 717.
[21] L. McLerran and R. D. Pisarski, Nucl. Phys. A796 (2007) 83; Y. Hidaka, L. McLerran, and R. D. Pisarski, Nucl. Phys. A808 (2008) 117; L. McLerran, K. Redlich, and C. Sasaki, Nucl. Phys. A824 (2009) 86.