Digital method comparision for discrimination of neutrons and gamma-rays with scintillation detector

Phan Van Chuan1, Nguyen Duc Hoa1, Nguyen Xuan Hai2, Nguyen Ngoc Anh2, Pham Dinh Khang3, Dinh Tien Hung4
1 Dalat University, 01 Phu Dong ThienVuong, Dalat, Vietnam
2 Nuclear Research Institute, 01 Nguyen Tu Luc, Dalat, Vietnam
3 Hanoi University of Science and Technology, 01 Dai Co Viet, Hanoi, Vietnam
4 Military Institute of Chemical and Environmental Engineering

Main Article Content

Abstract

The interference of gamma in neutron spectra reduces the accuracy of measurement results, especially when using the scintillation detector. The digital method can be used to identify either neutron or gamma pulses. In order to select the algorithm for NE213 scintillation detector, the Matlab Simulink tool was used to simulate neutron counting system. The results show that the figure of merits (FOM) of:rise-time discrimination method (RTD), pulsed gradient analysis (PGA) method, charge comparison method (CCM), and correlation pattern method (CPM) are 1.09, 0.66, 2.21 and 1.97, respectively.

Article Details

References

[1] M. L. Roush, M. A. Wilson, and W. F. Hornyak, “Pulse shape discrimination,” Nucl. Instruments Methods, vol. 31, no. 1, pp. 112–124, 1964.
[2] E. Bayat, N. Divani-Vais, M. M. Firoozabadi, and N. Ghal-Eh, “A comparative study on neutron-gamma discrimination with NE213 and UGLLT scintillators using zero-crossing method,” Radiat. Phys. Chem., vol. 81, no. 3, pp. 217–220, 2012.
[3] J. Cerny, Z. Dolezal, M. P. Ivanov, E. S. Kuzmin, J. Svejda, and I. Wilhelm, “Study of neutron response and n--γ discrimination by charge comparison method for small liquid scintillation detector,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 527, no. 3, pp. 512–518, 2004.
[4] G. Liu, M. J. Joyce, X. Ma, and M. D. Aspinall, “A digital method for the discrimination of neutrons and rays with organic scintillation detectors using frequency gradient analysis,” Nucl. Sci. IEEE Trans., vol. 57, no. 3, pp. 1682–1691, 2010.
[5] D. Takaku, T. Oishi, and M. Baba, “Development of neutron-gamma discrimination technique using pattern-recognition method with digital signal processing,” Prog. Nucl. Sci. Technol., vol. 1, pp. 210–213, 2011.
[6] S. Marrone, D. Cano-Ott, N. Colonna, C. Domingo, F. Gramegna, E. M. Gonzalez, F. Gunsing, M. Heil, F. Käppeler, P. F. Mastinu, and others, “Pulse shape analysis of liquid scintillators for neutron studies,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 490, no. 1, pp. 299–307, 2002.
[7] S. D. Jastaniah and P. J. Sellin, “Digital pulse-shape algorithms for scintillation-based neutron detectors,” IEEE Trans. Nucl. Sci., vol. 49 I, no. 4, pp. 1824–1828, 2002.
[8] G. F. Knoll, Radiation Detection and Measurement, vol. 3. 2010.
[9] H. Spieler, “Pulse processing and analysis,” IEEE NPSS Short Course, 1993 Nucl. Sci. Symp. San Fr. Calif., 2002.
[10] S. Barra, S. Kouda, A. Dendouga, and N.E. Bouguechal, “Simulink behavioral modeling of a 10-bit pipelined ADC,” Int. J. Autom. Comput., vol. 10, no. 2, pp. 134–142, 2013.
[11] B. D. Mellow, M. D. Aspinall, R. O. Mackin, M. J. Joyce, and A. J. Peyton, “Digital discrimination of neutrons and γ-rays in liquid scintillators using pulse gradient analysis,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 578, no. 1, pp. 191–197, 2007.