Assessing the radiological risks associated with primarily natural radioactivities of coastal seawater in northen Vietnam using the Erica software

Vo Thi Mong Tham1, Nguyen Trong Ngo1, Tran Quang Thien1, Le Xuan Thang1, Nguyen Minh Dao1, Phan Quang Trung1, Nguyen Thi Huong Lan1, Bui Ngoc Thien1
1 Dalat Nuclear Research Institute

Main Article Content

Abstract

The activity concentrations of naturally occurring radionuclides 226Ra, 232Th, and 238U were determined in marine sediments, seawaters and seafood along the Gulf of Vietnam to establish baseline data for future environmental monitoring at a surface water depth of 0–3 cm. The concentration of uranium, thorium and radium were determined using a low background gamma spectrum as well as activity ofy of 238U(214Bi), 232Th(228Ac) and 226Ra. The mean radioactivity concentrations of 226Ra, 232Th, and 238U were found to be 8.59 ± 0.54, 1.31 ± 0.15, and 6.91 ± 0.64 Bq m−3, respectively, in seawater samples and 32.96 ± 1.90, 37.64 ± 1.91, and 39.28 ± 1.96 Bq kg−1, respectively, in marine sediments, 0.21 ± 0.03, 0.69 ± 0.11, and 0.19 ± 0.03 Bq kg−1, respectively, in fish samples and 0.23 ± 0.041, 0.41 ± 0.06, and 0.31 ± 0.06 Bq kg−1, respectively, in clam samples. The radioactivity concentrations in seawater are higher than those in sediment and compared with those reported in other countries. The mean values of distribution coefficient (L/kg) is 0.53, 0.13, and 0.23, respectively, in fish samples and 0.19, 0.16 and 0.13, respectively, in clam samples at Hai Phong, Quang Ninh and Ha Tinh. Moreover, the ecological dose at Hai Phong, Quang Ninh and Ha Tinh are 0.03, 0.02 and 0.02 µGy h−1, respectively, in fish and 0.02, 0.03, and 0.03 µGy h−1, respectively, in clams and the mean human’s seafood consumers dose rate is 1.13×10-6 Sv/yrs. Results were discussed and compared with those reported in similar studies and with internationally recommended values within limits recommended by UNSCEAR.

Article Details

References

[1]. Vives i Batlle, J., “Radioactivity radioactivity in the Marine Environment radioactivity in the marine environment”, Encyclopedia of Sustainability Science and Technology, (8387–8425), 2012. doi:10.1007/978-1-4419-0851-3_880. 
[2]. P Van Beek et al., “Radium isotopes to investigate the water mass pathways on the Kerguelen Plateau (Southern Ocean)”, Deep Sea Research Part II: Topical Studies in Oceanography, 55 (622-637), 2008. DOI:10.1016/j.dsr2.2007.12.025.
[3]. Rapaglia. J.. C., Ferrarin. L., Zaggia. W. S, Moore. G., Umgiesser. E., Garcia-Solsona. J., Garcia-Orellana., and P. Masqué., “Investigation of residence time and groundwater flux in Venice Lagoon: Comparing radium isotope and hydrodynamical models”, J. Environ. Radioact., 101 (571– 581), 2010. https://doi.org/10.1016/j.jenvrad.2009.08.010.
[4]. Naturally Occurring Radioactive Materials in Construction, Integrating Radiation Protection in Reuse (COST Action Tu1301 NORM4BUILDING), ISBN978-0-08-102009-8, 2017. https://doi.org/10.1016/C2016-0-00665-4.
[5]. F.V. Clulow, “Radionuclides (lead-210, polonium-210, thorium-230 and -232) and thorium and uranium in water, sediments, and fish from lakes near the city of Elliot Lake, Ontario, Canada”, Journal of Environmental Pollution, 96 (75-78), 1997. DOI:10.1016/S0269-7491(97)00187-5.
[6]. Nguyễn Quang Long et al., “Artificial spread of radioactivity in seawater from Fukushima to the East Sea”, The 12th regional conference on nuclear science and technology, 2017.
[7]. IAEA-TECDOC-1429, “Moldwide marine radioactivity studies (WOMARS)”, Radionuclide level in oceans and seas, 2005.
[8]. Wagner de Souza Pereira et.al, “Sediment Distribution Coefficients (KD) and Concentration Factors (CF) in fish for natural radionuclides in a pond of a tropical region and their contributions to estimations of internal absorbed dose rate in fish”, The conference for Congress of the International Radiation Protection Association: Strengthening Radiation Protection Worldwide - Highlights, Global Perspective and Future Trends, vol. 43, 2010.
[9]. Trong-Ngo Nguyen et.al., “Acrylic fibers coated with copper hexacyanoferrate to determine 137Cs activity in coastal seawater of Vietnam”, Journal of Radioanalytical and Nuclear Chemistry, 326 (919-924), 2020. https://doi.org/10.1016/j.jenvrad.2010.03.016.
[10]. Trong-Ngo Nguyen et.al., “Activity Concentrations of Sr-90 and Cs-137 in Seawater and Sediment in the Gulf of Tonkin. Vietnam”, Journal of Chemistry. 8752606 (8), 2020. https://doi.org/10.1155/2020/8752606.
[11]. V.Harms et al., “IAEA proficiency tests for determination of radionuclides in sea water”, Applied Radiation and Isotopes, 126 (252 – 255), 2017. DOI: 10.1016/j.apradiso.2017.02.015.
[12]. Konovalenko. L., Bradshaw. C., Andersson. E., Kautsky. U., “Application of an ecosystem model to evaluate the importance of different processes and food web structure for transfer of 13 elements in a shallow lake”, J. Environ. Radioact., 169-170
(85–97), 2017. DOI: 10.1016/j.jenvrad.2016.12.016.
[13]. Sadaf S., Mats I., Harding K C., “Bioaccumulation of radioactive caesium in marine mammals in the Baltic Sea – Reconstruction of a historical time series”, Science of the Total Environment., 631–632 (7–12), 2018. https://doi.org/10.1016/j.scitotenv.2018.02.282.
[14]. Brown J. D., Hosseini A., Borretzen P., Thorring H., “Development of a methodology for assessing the environmental impact of radioactivity in Northern Marine environments”, Mar. Pollut. Bull., 52 (10) (1127–1137), 2006. DOI: 10.1016/j.marpolbul.2006.05.021.
[15]. N.A. Beresford, “Radionuclide transfer to wildlife at a ‘Reference site’ in the Chernobyl Exclusion Zone and resultant radiation exposures”, Journal of Environmental Radioactivity, 2018. https://doi.org/10.1016/j.jenvrad.2018.02.007.
[16]. Maria Sotiropoulou, “Radioactivity measurements and dose rate calculations using the ERICA tool in the terrestrial environment of Greece”, Springer-Verlag Berlin Heidelberg, 2016. DOI: 10.1007/s11356-016-6240-1.
[17]. NRPA, “Results from the Norwegian National Monitoring Programme (RAME) StralevernRapport”, Radioactivity in the Marine Environment, 15, 2009.
[18]. Taskin H., Karavus M., Ay P., Topuzoglu A., Hidiroglu S., Karahan G., “Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey”, J Environ Radioact., 100 (49–53), 2009. DOI: 10.1016/j.jenvrad.2008.10.012.
[19]. Suzuki Y, “Influences of Radiation on Carp from Farm Ponds in Fukushima”, J. Radiat., 56 (i19−i23), 2015. Doi: 10.1093/jrr/rrv076.
[20]. J.E. Brownet al., “The ERICA Tool”, Journal of Environmental Radioactivity, 99, 2008.DOI: 10.1016/j.jenvrad.2008.01.008.
[21]. Trần Đình Khoa et al., “Environmental radioactivity and associated radiological hazards in surface soil in Ho Chi Minh city. Vietnam”, J. of Radioanalytical and Nuclear Chemistry, 326 (1773-1783), 2020. DOI:10.1007/s10967-020-07466-1.
[22]. ICRP, “The 2007 Recommendations of the International Commission on Radiological Protection”, ICRP Publication 103, Annals of the ICRP, 37(2–4), 2007.
[23]. https://en.vietnamplus.vn/vietnamese-seafood-sector-to-enjoy-strong-growth-in-20212030-report/221007.vnp.
[24]. K. Eckerman et al., “ICRP Publication 119: Compendium of Dose Coefficients based on ICRP Publication 60”, Annals of the ICRP, Vol. 42, Issue 4, Pages e1-e130, August 2013.