Application of nuclear analytical spectroscopies and ion beams to the study of nanomaterials: cooperative projects between Vinatom and JINR (Dubna)

Tuyen Luu Anh1, Nguyen Quang Hung2,3, Nguyen Van Tiep4,5, Dinh Van Phuc2,3, Phan Trong Phuc6, Lo Thai Son6, Tran Đong Xuan2,3, Pham Thi Hue6, Nguyen Thi Ngoc Hue6, La Ly Nguyen6, Ngo Dang Trung6
1 Center for Nuclear Technologies - Vietnam Atomic Energy Institute
2 Institute of Fundamental and Applied Sciences (IFAS), Duy Tan University, Ho Chi Minh City
3 Faculty of Natural Sciences, Duy Tan University, Da Nang City
4 Joint Institute of Nuclear Research (JINR, Dubna, Russia)
5 Institute of Physics (IOP), Vietnam Academy of Science and Technology (VAST)
6 Center for Nuclear Technologies (CNT), Vietnam Atomic Energy Institute (Vinatom), Ho Chi Minh City

Main Article Content


Due to the rapid scientific and technological development in the last decades, basic research in solid state physics, chemistry and material science has focused on objects and phenomena more and more confined in dimensions and time-scale, and well visible for the general publicity by introducing the terms “nanophysics, nanoscience, nanomaterials, etc.”, often featured in the media. Researchers therefore keep searching for better and better investigative techniques. Various nuclear analytical spectroscopies, such as Positron annihilation lifetime (PAL), Doppler broadening of positron annihilation energy (DB), Electron momentum distribution (EMD), Slow positron beam (SPB), Neutron diffractions (ND), Rutherford backscattering (RBS), etc., have proved themselves as useful tools for microscopic analysis of different material’s structure ranging from angstrom (Ȧ) to nanometer (nm) scales. Besides, ion beams generated from accelerators (electron, 1H, 2He, 40Ar, 86Kr, 109Ag, 123Xe, 184W, etc.) have also become very effective tools for modifying the micro structure of nanomaterials. These methods have been intensively utilized by our group at Vinatom with external collaborations from JINR (Dubna) in order to study the in-depth structure of different nanomaterials. This report introduces our research and collaborative activities, facilities and some recent highlighted results.

Article Details


[1]. M. E. Davis, “Ordered porous materials for emerging applications”, Nature, 417, 813–821, (2002),
[2]. F. A. Selim, “Positron annihilation spectroscopy of defects in nuclear and irradiated materials- a review”, Mater. Charact., 174, 110952, (2021),
[3]. Y. Zhang, A. Debelle, A. Boulle,P. Kluth, F. Tuomisto, “Advanced techniques for characterization of ion beam modified materials”, Curr. Opin. Solid State Mater. Sci, 19, 19–28, (2015),
[4]. S. E. Ashbrook,  Z. H. Davis, R. E. Morris, C. M. Rice, “17O NMR spectroscopy of crystalline microporous materials”, Chem. Sci., 12, 5016–5036, (2021),
[5]. S. Taller, D. Woodley, E. Getto, A. M. Monterrosa, Z. Jiao, O. Toader, G. S. Was, “Multiple ion beam irradiation for the study of radiation damage in materials”, Nucl. Instrum. Methods Phys. Res. B, 412, 1–10, (2017),
[6]. A. Mackova, V. Havranek, “Ion beams provided by small accelerators for material synthesis and characterization”, AIP Conf. Proc., 1852, 060003, (2017),
[7]. W. Wesch, E. Wendler (Eds.), “Ion Beam Modification of Solids”, Springer Ser. Surf. Sci., 61, 137–182, (2016), ISBN: 978-3-319-33561-2.
[8]. Nguyen Duc Thanh, Tran Quoc Dung, Luu Anh Tuyen, Khuong Thanh Tuan, “Semi-empirical formula for large pore-size estimation from the o-Ps annihilation lifetime”, Int. J. Nucl. Ener. Sci. and Tech., 4, 81–87, (2008),
[9]. A. T. Luu et al., “Multi‐wall carbon nanotubes investigated by positron annihilation techniques and microscopies for further production handling”, Phys. Status Solidi C, 6, 2578–2581, (2009),
[10]. Z. Kajcsos, C. Kosanovic, S. Bosnar, B. Subotic, P. Major, Laszlo Liszkay, D. Bosnar, K. Lázár, H. Havancsák, A.T. Luu, N. D. Thanh, “Monitoring the Crystallization Stages of Silicalite by Positron Lifetime Spectroscopy”, Mater. Sci. Forum., 607, 173–176, (2009),
[11]. L. A. Tuyen et al., “Positron annihilation characteristics in multi-wall carbon nanotubes with different average diameters”, J. Phys.: Conf. Ser., 443, 012065, (2014),
[12]. L. A. Tuyen et al., “Structural effects induced by 2.5 MeV proton beam on zeolite 4A: Positron annihilation and X-ray diffraction study”, Radiat. Phys. Chem., 106, 355–359, (2015), 
[13]. L. A. Tuyen et al., “Simultaneous existence of defects and mesopores in nanosized ZSM-5 zeolite studied by positron annihilation and X-ray diffraction spectroscopies”, J. Appl. Phys., 121, 084303, (2017),
[14]. D. Van-Phuc, L. Ngoc-Chung, L. Anh Tuyen, N. Quang Hung, N. Van-Dong, N. Ngoc-Tuan, “Insight into adsorption mechanism of lead(II) from aqueous solution by chitosan loaded MnO2 nanoparticles”, Mater. Chem. Phys., 207, 294–302, (2018),
[15]. P. Horodek, L. H. Khiem, K. Siemek, L. A. Tuyen, A. G. Kobets, “Positron Annihilation Spectroscopy in Material studies”, Comm. Phys., 29, 501–510, (2019),
[16]. A. T. T. Pham, T. A. Luu, N. K. Pham, H. K. T. Ta, T. H. Nguyen, D. V. Hoang, H. T. Lai, V. C. Tran, J-H. Park, J-K. Lee, S. Park, O. Michitaka, S-D. Park, H. Q. Nguyen, T. B. Phan, “Multi-scale defects in ZnO thermoelectric ceramic materials co-doped with In and Ga”, Ceram. Int., 46, 10748–10758, (2020),
[17]. D. T. Tuyet, V. T. H. Quan, B. Bondzior, P.J. Dereń, R.T. Velpula, H. P. T. Nguyen, L. A. Tuyen, N. Q. Hung, and H-D. Nguyen, “Deep red fluoride dots-in-nanoparticles for high color quality micro white light-emitting diodes”, Opt. Express, 28, 26189–26199, (2020),
[18]. L Anh Tuyen, T Dong Xuan, HA Tuan Kiet, L Chi Cuong, P Trong Phuc, Dinh-Van Phuc, L Ly Nguyen, NT Ngoc Hue, P Thi Hue, L Thai Son, N Quang Hung, “A hybrid model for estimation of pore size from ortho-positronium lifetimes in porous materials”, Radiat. Phys. Chem., 172, 108867, (2020),
[19]. D. T. T. Uyen, P. T. A. Tuan, P. B. Thang, P. Sungkyun, L. A. Tuyen, N. Q. Hung, L. T. Son, T. D. Tap, O. Masataka, P. K. Ngoc, “Abnormal volatile and normal stable bipolar resistive switching characteristics of hybrid nanocomposites: Morphology–defects–property’ Relationship”, J. Alloys and Compd. 857, 157602, (2020),
[20]. P. Trong Phuc et al., “Design of a unique holder for structural modification of ZSM-5 zeolite using a 10 MeV electron beam generated from an industrial UERL-10-15S2 linear accelerator”, Radiat. Phys. Chem. 174, 108948, (2020), 10.1016/j.radphyschem.2020.108948.
[21]. D. Van-Phuc et al., “HTDMA-modified bentonite clay for effective removal of Pb(II) from aqueous solution”, Chemosphere, 286, 131766, (2021),
[22]. L. A. Tuyen et al., “Investigation on the possible use of electron beams to modify the structure of ZSM-5 zeolite for applications in hazardous-waste treatments and industrial catalysis”, MOST project report (grant number: DTCB: 14/19 TTHN), (2020).
[23]. L. A. Tuyen et al., “Enhancement of the petroleum catalytic ability of ZSM-5 zeolite using electron-irradiation technology”, MOST project (grant number: DTCB: 15/21 TTHN), (2021).
[24]. Anh Vũ, “Hiệu quả trong hợp tác với Dubna”, Tạp chí Tia Sáng – Bộ KHCN, 22/03/2018.
[25]. JINR, “Agreement on cooperation with VINATOM was signed”, News, 25 April 2019.
[26]. Website of JINR (July, 2021),
[27]. N. N. Mondal “Development of slow positron beam lines and applications”, AIP Conf. Proc., 1970, 040005, (2018),
[28]. L. A. Tuyen et al., “Possible enhancement of the photocatalytic performance of BiVO4 photocatalytic membranes using ions-irradiation technology”, MOST project proposal, 2022.
[29]. S. J. Tao, “Positronium annihilation in molecular substances” J. Chem. Phys., 56, 5499, (1972),
[30]. T. L. Dull, W. E. Frieze, D. W. Gidley, “Determination of pore size in mesoporous thin films from the annihilation lifetime of positronium” J. Phys. Chem. B, 105, 4657, (2001),
[31]. K. Ito, H. Nakanishi, Y. Ujihira, “Extension of the equation for the annihilation lifetime of ortho-positronium at a cavity larger than 1 nm in radius”, J. Phys. Chem. B, 103, 4555, (1999),