Towards the intermolecular force in charged AdS black hole

Hoang Van Quyet1, Tran Huu Phat2, Nguyen Tuan Anh3
1 Department of Physics, Hanoi Pedagogical University 2
2 Vietnam Atomic Energy Commission
3 Faculty of Energy Technology, Electric Power University

Main Article Content

Abstract

In this paper we attempt to find the intermolecular force of charged AdS black holes (BH). We first write the equation of state of BH in the form of the van der Waals (vdW) equation and show that this equation describes accurately the BH phase transition. Based on the Lennard- Jones (LJ) potential we establish the modified LJ force which is compatible with this vdW equation. Of particular interest, in the first time we find that this force can be always written as the sum of the topological force, created by the topological charge, and the electrostatic force, created by charged conducting micro-sphere with definite radius. Then the phase transition of BH is totally controlled by these forces. In the process of phase transition from small to large BHs the sum of these forces changes from repulsive to attractive forces and this behavior is supported by the scalar curvature of the thermodynamic geometry. Combining these properties, we arrive at the physical picture of the BH molecules: they behave like charged conducting micro-spheres which bear topological charge. It necessarily to remark that although our intermolecular force is better than the one obtained recently in [29], it remains an approximate force.

Article Details

Author Biographies

Hoang Van Quyet, Department of Physics, Hanoi Pedagogical University 2

32 Nguyen Van Linh St, Xuan Hoa ward, Phuc Yen city, Vinh Phuc province

Tran Huu Phat, Vietnam Atomic Energy Commission

59 Ly Thuong Kiet, Hanoi, Vietnam

Nguyen Tuan Anh, Faculty of Energy Technology, Electric Power University

235 Hoang Quoc Viet, Hanoi, Vietnam

References

[1]. David Kubiznak, Robert B. Mann, JHEP 07, 033 (2012).
[2]. Y. G. Miao and Zh. M. Xu, Phys.Rev.D 98, 044001 (2018).
[3]. Shao-Wen Wei and Yu-Xiao Liu, Phys. Rev. Lett. 115, 111302 (2015).
[4]. Sh. W. Wei and Y. X. Liu, Phys. Rev. D 91, 044018 (2015).
[5]. Y. Tian, X. N. Wu and H. B. Zhang, JHEP 10, 170 (2014).
[6]. Y. Tian, Class. Quantum Grav. 36, 245001 (2019).
[7]. S.Q.Lan, G.Q.Li, J. X. Mo and X. B. Xu, Adv. In High Energy Phys. 2019, Article ID 8270265, arXiv: 1804.06652v2 [ gr-qc].
[8]. Shan-Quan Lan, Advances in High Energy Physics, 4350287 (2018).
[9]. Tester Jefferson at al., Thermodynamics and Its Applications, Prentice Hall, 1997.
[10]. G. Ruppeiner, Phys. Rev. D 78, 024016 (2008)
[11]. D. C. Johnston, Thermodybamic Properties of the van der Waals Fluid, arxiv:1402. 1205 (cond-mat. soft).
[12]. J. C. Teixeira { Dias (eds), Molecular Liquids: New Perspectives in Physics and Chemistry, NATO Science Series C, 1992.
[13]. M. Baus and C. F. Tejero, Equilibrium Statistical Physics, Springer 2008.
[14]. B. J. Alder and T. E. Wainwright, J. Chemical Phys. 31(2), 459 (1959).
[15]. A. Singh and Y. Singh, PRE 103, 052105 (2021).
[16]. Shota Ono and Tasuku Ito, PRB 103, 075406 (2021).
[17]. Z. Shu andG. J. Davies, Phys. Status Solidi A 78(2), 295 (1983).
[18]. E. A, Koval and O. A. Koval, PRA 102, 042815 (2020).
[19]. J. Lekner, Am. J. Phys. 84, 6 (2016).
[20]. G. Ruppeiner, Rev. Mod. Phys. 67, 605 (2015).
[21]. A. Dehyadegari, A. Sheykhi and A. Montakhab, Phys. Lett. B 768, 235 (2017).
[22]. A. Dehyadegari, A. Sheykhi and S. W. Wei, arxiv: 2006. 12265.
[23]. H. Liu, M. X. Luo and K. N. Shao, JHEP 1012, 054 (2010).
[24]. S. W. Wei, Y. X. Liu and R. B. Mann, arxiv: 1909. 03887.
[25]. G. Ruppeiner, Phys. Rev. E 86, 021130 (2012).
[26]. Ruppeiner,G., Phys.Rev. E 88, 032123 (2013).
[27]. G. Ruppeiner, J.Phys.: Conf. Series 410, 012138 (2013).
[28]. G. Ruppeiner, Springer Proc. In Phys. 153, edited by S.Bellucci (Springer. Cham, 2014), p. 179.
[29]. S. W. Wei, Y. X. Liu and R. B. Mann, arXiv:2108.07655v2 [gr-qc] 25 Aug 2021.