Wide-Aperture Backscattering Detector (BSD-A) for The High-Resolution Fourier Diffractometer

Hai Cao Van1, A.M. Balagurov2, A.A. Bogdzel2, V.I. Bodnarchuk2, O. Daulbaev2, V.A. Drozdov2, V.V. Zhuravlev2, A.S. Kirilov2, S.A. Kulikov2, A.K. Kurilkin2, А.А. Kazliakouskaya2, V.M. Milkov2, S.M. Murashkevich2, M.M. Podlesnyy2, V.I. Prikhodko2, M.O. Petrova2, S.V. Sumnikov2, A.V. Churakov2, V.V. Shvetsov2
1 s:36:"Joint Institute for Nuclear Research";
2 Joint Institute for Nuclear Research (JINR)

Main Article Content

Abstract

The high-resolution Fourier diffractometer (HRFD) has been in routine operation since 1994 at the long-pulse neutron source, the IBR-2 reactor, in Dubna. Its fast Fourier chopper provides probably the best compromise between very high resolution in reciprocal space (Δd/d ≈ 0.001) and the intensity. For further improving intensity of TOF-diffraction pattern, a wide-aperture ring backscattering detector (BSD) has been developed on the basis of ZnS(Ag)/6LiF scintillator. BSD is designed in the form of 6 concentric rings, each of which is subdivided into 12 identical parts. The main parameters of the detector are the following: range of scattering angles is 2θ = (133 - 175) degrees, covered solid angle is Ωd ≈ 2.0 sr, average percentage absorption efficiency gets closer to 85%, geometrical contribution to resolution function does not exceed Δd/d  = 0.0005. In the report the concept of the detector is described and its data acquisition system is presented. The start of operation of the detector at the HRFD is scheduled for 2024.

Article Details

Author Biographies

A.M. Balagurov, Joint Institute for Nuclear Research (JINR)

Dubna, Moscow region, 141980, Russian Federation

A.A. Bogdzel, Joint Institute for Nuclear Research (JINR)

Dubna, Moscow region, 141980, Russian Federation

V.I. Bodnarchuk, Joint Institute for Nuclear Research (JINR)

Dubna, Moscow region, 141980, Russian Federation

O. Daulbaev, Joint Institute for Nuclear Research (JINR)

Dubna, Moscow region, 141980, Russian Federation

V.A. Drozdov, Joint Institute for Nuclear Research (JINR)

Dubna, Moscow region, 141980, Russian Federation

V.V. Zhuravlev, Joint Institute for Nuclear Research (JINR)

Dubna, Moscow region, 141980, Russian Federation

A.S. Kirilov, Joint Institute for Nuclear Research (JINR)

Dubna, Moscow region, 141980, Russian Federation

S.A. Kulikov, Joint Institute for Nuclear Research (JINR)

Dubna, Moscow region, 141980, Russian Federation

A.K. Kurilkin, Joint Institute for Nuclear Research (JINR)

Dubna, Moscow region, 141980, Russian Federation

А.А. Kazliakouskaya, Joint Institute for Nuclear Research (JINR)

Dubna, Moscow region, 141980, Russian Federation

V.M. Milkov, Joint Institute for Nuclear Research (JINR)

Dubna, Moscow region, 141980, Russian Federation

S.M. Murashkevich, Joint Institute for Nuclear Research (JINR)

Dubna, Moscow region, 141980, Russian Federation

M.M. Podlesnyy, Joint Institute for Nuclear Research (JINR)

Dubna, Moscow region, 141980, Russian Federation

V.I. Prikhodko, Joint Institute for Nuclear Research (JINR)

Dubna, Moscow region, 141980, Russian Federation

M.O. Petrova, Joint Institute for Nuclear Research (JINR)

Dubna, Moscow region, 141980, Russian Federation

S.V. Sumnikov, Joint Institute for Nuclear Research (JINR)

Dubna, Moscow region, 141980, Russian Federation

A.V. Churakov, Joint Institute for Nuclear Research (JINR)

Dubna, Moscow region, 141980, Russian Federation

V.V. Shvetsov, Joint Institute for Nuclear Research (JINR)

Dubna, Moscow region, 141980, Russian Federation

References

[1]. Aksenov V.L., Balagurov A.M., Simkin V.G., Bulkin A.P. et al., “Performance of the high resolution Fourier diffractometer at the IBR-2 pulsed reactor”
J. of Neutron Research, 1997, v.5, pp. 181-200. Препринт ОИЯИ, Р13-96-164, Дубна, 1996.
[2]. Balagurov A.M., “High resolution Fourier diffraction at the IBR-2 reactor” Neutron News, 16 (2005) 8-12.
[3]. Balagurov A.M., Kudrjashev V.A., “Correlation Fourier diffractometry for long-pulse neutron sources: a new concept” ICANS-XIX conference, 08-12.04.2010, Grindenwald, Switzerland.
[4]. Balagurov A.M., Balagurov D.A., Bobrikov I.A., Bogdzel A.A. et al., High-resolution neutron Fourier diffractometer at the IBR-2 pulsed reactor: a new concept. Nuclear Inst. and Methods in Physics Research B 436 (2018), pp.263-271
[5]. Aksenov V.L., Balagurov A.M. , Sikolenko V.V., Simkin V.G. et al., “Precision neutron diffraction study of the high-Tc superconductor HgBa2CuO4+” Phys. Rev. B, 1997, v.55, pp.3966-3973.
[6]. Abakumov A.M., Aksenov V.L., Antipov E.V., Balagurov A.M. et al., “Effect of fluorination on the structure and superconducting properties of the Hg-1201 phase” Phys. Rev. Lett., 1998, v.80(2), pp.385-388.
[7]. Balagurov A.M., Pomjakushin V.Yu., Sheptyakov D.V., Aksenov V.L. et al., “Effect of oxygen isotope substitution on magnetic structure of (La0.25Pr0.75)0.7Ca0.3MnO3” Phys. Rev. B, v.60(1), 1999, pp.383-387.
[8]. Balagurov A.M., Pomjakushin V.Yu., Sheptyakov D.V., Aksenov V.L. et al., “A-cation size and oxygen isotope substitution effects on (La1-yPry)0.7Ca0.3MnO3 structure” Eur. Physical J. B, 2001, v. 19 (2), pp.215-223.
[9]. Golovin I.S., Balagurov A.M., Palacheva V.V., Bobrikov I.A. et al., In situ neutron diffraction study of bulk phase transitions in Fe-27Ga alloys, Materials and Design 98 (2016) 113-119
[10]. Bobrikov I.A., Balagurov A.M., Chih-Wei Hu, Chih-Hao Lee et al., Structural evolution in LiFePO4-based battery materials: in-situ and ex-situ time-of-flight neutron diffraction study, Journal of Power Sources 258, 356-364 (2014)
[11]. Balagurov A.M., Pomjakushin V.Yu., Simkin V.G., Zakharov A.A. “Neutron diffraction study of phase separation in La2CuO4+y single crystals” Physica C, 1996, v.272, pp.277-284.
[12]. Kruglov V.V., Balagurov A.M., Belova M.O., Bobrikov I.A., Bogdzel A.A., Bodnarchuk V.I., Bulavina V.V., Daulbaev O., Drozdov V.A., Zhuravlev V.V., Kirilov A.S., Kulikov S.A., Kurilkin A.K., Milkov V.M., Murashkevich S.M., Podlesnyy M.M., Prikhodko V.I., Churakov A.V. and Shvetsov V.V. “Wide-aperture back-scattering detector (BSD) for the High-Resolution Fourier Diffractometer (HRFD) at the IBR-2 reactor”, Journal of Neutron Research 23 (2021) 243–250.
[13]. E.S. Kuzmin, A.M. Balagurov, G.D. Bokuchava, V.V. Zhuk, V.A. Kudryashev, A.P. Buklin and V.A. Trounov, Detector for the FSD Fourier Diffractometer based on ZnS(Ag)/6LiF Scintillation Screen and Wavelength shifting Fibers Readout, Journal of Neutron Research (2002), 31–41. doi:10.1080/10238160290027748.
[14]. Levchanovskiy F.V., Murashkevich S.M. “The Data Acquisition System for Neutron Spectrometry – a New Approach and Implementation”, NEC’2013, pp.176-179.
[15]. Shvetsov V.V., Drozdov V.A.. "Increasing Bandwidth of Data Acquisition Systems on IBR-2 Reactor Spectrometers in FLNP".
Proceedings of the XXVI International Symposium on Nuclear Electronics & Computing (NEC’2017) Becici, Budva, Montenegro, September 25 - 29, 2017, European repository of the CEUR Workshop Proceedings Vol-2023, pp. 293-298.
[16]. Bogdzel A., Drozdov V., Kruglov V., Murashkevich S., Prikhodko V. Shvetsov V., «The new data acquisition system MPD-32 for the high-resolution Fourier diffractometer at the IBR-2 pulsed reactor». Proceedings of the 27th International Symposium Nuclear Electronics and Computing (NEC’2019) Budva, Becici, Montenegro, September 30–October 4, 2019, CEUR-WS Vol-2507 (ISSN 1613-0073), pp.142-146 (https://indico.jinr.ru/event/738/contributions/6365/).