Temporal variation of stable isotopic values for dissolved nitrogen compounds in paddy water environment
Main Article Content
Abstract
Vietnam is the second-largest rice exporter worldwide and the amount of applied fertilizer is increasing rapidly in recent years. Overuse of chemical fertilizers in the paddy fields strongly contributes to the pollution of water bodies. This study aimed to understand the temporal variation of nitrogen concentrations and stable isotope values as environmental tracers based on the observed data in a selected paddy field in Vietnam, which provides basic and useful clues for tracing sources and identifying processes of nitrogen. The results from the field survey showed that , in accordance with
the changes in concentrations, δ15N values of ammonium and nitrate in ponded water drastically varied from -3.6‰ to 17.2‰ and from -18.2‰ to 8.5‰, respectively. The present study implied that not only chemical fertilizers but also irrigation water was the major source of nitrogen into the paddy. In addition, microbiological nitrification and denitrification were presumed based on the temporal isotopic variations.
Article Details
Keywords
Nitrogen source, Nitrogen processes, Environmental tracer
References
[2]. CGIAR. “Fourth Edition Rice Almanac”, CGIAR, 137-140, 2013.
[3]. Cho JY, Han KW. “Nutrient losses from a paddy field plot in central Korea” Water, Air, and Soil Pollution, 134, 215-228, 2002.
[4]. Do TN, Nishida K. “A nitrogen cycle model in paddy fields to improve material flow analysis: the Day-Nhue River Basin case study”, Nutrient Cycling on Agroecosystems, 100 (2), 215–226, 2014.
[5]. Feigin A, Shearer G, Kohl DH, Commoner B. “The amount and nitrogen-15 content of nitrate in soil profiles from two Central Illinois fields in corn-soybean rotation”, Soil Science Society of America, Proceedings. 38, 465-471, 1974.
[6]. Kendall C, McDonnell JJ. “Isotope tracers in catchment hydrology”, Elsevier, 528-529, 1998.
[7]. Lee KS, Lee DS, Lim SS, Kawak JH, Jeon BJ, Lee SI, Lee SM, Choi WJ, “Nitrogen isotope ratios of dissolved organic nitrogen in wet precipitation in a metropolis surrounded by agricultural areas in southern Korea”, Agriculture, Ecosystems and Environment, 159, 161-169, 2012.
[8]. Liang XQ, Chen YX, Li H, Tian GM, Ni WZ, He MM. Zhang ZJ, “Modeling transport and fate of nitrogen from urea applied to a near-trench paddy field”, Environment Pollution, 150 (3), 313-320, 2007.
[9]. Nguyen TPM, Nakamura T, Shindo J, Nishida K, “Application of Stable Isotopes to Identify Nitrogen Sources in the Outflow Waters from Paddy”, Journal of Water Environment Technology, 13(5) 371–381, 2015.
[10]. Qiao J, Yang L, Yan T, Xue F, Zhao D, “Nitrogen fertilizer reduction in rice production for two consecutive years in the Taihu Lake area”, Agriculture, Ecosystems and Environment, 146, 103-112, 2012.
[11]. Shindo J, Okamoto K, Kawashima H, “Prediction of the environmental effects of excess nitrogen caused by increasing food demand with rapid economic growth in eastern Asian countries, 1961–2020”, Ecological Modelling, 193, 703-720, 2006.
[12]. Tian YH, Yin B, Yang LZ, Yin SX, Zhu ZL, “Nitrogen runoff and leaching losses during rice-wheat rotations in Taihu Lake region, China”, Pedosphere, 17 (4), 445-456, 2007.
[13]. Tran VB, Ishidaira H, Nakamura T, Do TN, Nishida K, “Estimation of nitrogen load with multi-pollution sources using the SWAT model: a case study in the Cau river basin in northern Vietnam”, Journal of Water and Environment Technology, 15 (3), 106-119, 2017.
[14]. Umezawa Y, Hosono T, Onodera S, Siringan F, Buapeng S, Delinom R, Yoshimizu C, Tayasu I, Nagata T, Taniguchi M, “Erratum to “Sources of nitrate and ammonium contamination in groundwater under developing Asian megacities””, Science of The Total Environment, 407 (9), 3219-3231, 2009.