Synthesis of conducting polymer by gamma Co-60 ray in aqueous solution

Xuan Vinh Le1, Ba Vu Chinh Nguyen, Viet Cuong Phan, Tai Dai Vo, Ngoc Dat Trinh, Thanh Khan Dinh, Van Din Nguyen
1 Research and Development Center for Radiation Technology

Main Article Content


This report presents the findings of a study on the synthesis of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) using gamma Co-60 radiation in an aqueous solution saturated with N2 gas, containing 5 mM EDOT monomer and 0.2 M isopropanol. Gamma radiation with doses ranging from 12 kGy to 58 kGy from a gamma Co-60 source was employed. To assess the chemical composition of the solution before and after irradiation, UV-Vis and FTIR absorption spectra were examined. The results indicated the formation of yellow suspensions in the solution after irradiation, along with the emergence of dimers, oligomers, and PEDOT polymers as evidenced by UV-Vis spectra. The dried powders obtained from the irradiated solutions confirmed the successful synthesis of PEDOT, exhibiting distinct chemical structural characteristics in the FTIR spectra. These findings demonstrate the effective radiation-induced synthesis of conducting PEDOT polymer using gamma Co-60 irradiation.

Article Details


[1]. Lattach, Youssef, et al., “Radiation chemistry as an alternative way for the synthesis of PEDOT conducting polymers under “soft” conditions”, Radiation Physics and Chemistry, vol. 82, pp. 44-53, (2013), doi: 10.1016/j.radphyschem.2012.09.009.
[2]. Wang, Y., “Research progress on a novel con-ductive polymer–poly (3, 4-ethylenedioxythiophene) (PEDOT)”, Journal of Physics: Conference Series, vol. 152, (2009), doi: 10.1088/1742-6596/152/1/012023.
[3]. Li, C., Bai, H., Shi, G., “Conducting polymer nanomaterials: electrosynthesis and applications”, Chem. Soc. Rev., vol. 38, pp. 2397–2409, (2009), doi: 10.1039/b816681c.
[4]. Jiang, C.Q., Chen, G.M., Wang, X., “High-conversion synthesis of poly(3,4- ethylenedioxythiophene) by chemical oxidative polymerization”, Synth. Met., vol. 162(21-22), pp. 1968–1971, (2012), doi: 10.1016/j.synthmet.2012.09.008.
[5]. Cui, Z., Coletta, C., Rebois, R., Baiz, S., Gervais, M., Goubard, F., ... & Remita, S., “Radiation-induced reduction-polymerization route for the synthesis of PEDOT conducting polymers”, Radiation Physics and Chemistry, vol. 119, pp. 157-166, (2016), doi: 10.1016/j.radphyschem.2015.10.011.
[6]. Qiu, C., Wang, J., Mao, S., Guo, W., Cheng, S., & Wang, Y., “Preparation of poly (3, 4‐ethylenedioxythiophene)/poly (styrene sulfonate)(PEDT/PSS) composite and its applications in anti‐static coating”, Polymers for Advanced Technologies, vol. 21(9), pp. 651-655, (2010), doi: 10.1002/pat.1482.
[7]. Bubnova, O., Khan, Z. U., Malti, A., Braun, S., Fahlman, M., Berggren, M., & Crispin, X., “Optimization of the thermoelectric figure of merit in the conducting polymer poly (3, 4-ethylenedioxythiophene)”, Nature materials, vol. 10, pp. 429-433, (2011), doi: 10.1038/nmat3012.
[8]. Baik, W., Luan, W.Q., Zhao, R.H., Koo, S., Kim, K.S., “Synthesis of highly conductive poly(3,4-ethylenedioxythiophene) fiber by simple chemical polymerization”, Synth. Met., vol. 159, pp. 1244–1246, (2009), doi: 10.2016/j.synthmet.2009.02.044.
[9]. Li, C., Bai, H., & Shi, G., “Conducting polymer nanomaterials: electrosynthesis and applications”, Chemical Society Reviews, vol. 38, pp. 2397-2409, (2009), doi: 10.1039/B816681C.
[10]. Aradilla, D., Estrany, F., & Aleman, C., “Different properties for poly (3, 4‐ethylenedioxythiophene) films derived from single or multiple polymerization steps”, Journal of Applied Polymer Science, vol. 121, pp. 1982-1991, (2011), doi: 10.1002/app.33758.
[11]. Bahry, T., Cui, Z., Deniset-Besseau, A., Gervais, M., Sollogoub, C., Bui, T. T., & Remita, S., “An alternative radiolytic route for synthesizing conducting polymers in an organic solvent”, New Journal of Chemistry, vol. 42, pp. 8704-8716, (2018), doi: 10.1039/C8NJ01041B.
[12]. Lattach, Y., Coletta, C., Ghosh, S., & Remita, S., “Radiation‐induced synthesis of nanostructured conjugated polymers in aqueous solution: fundamental effect of oxidizing species”, ChemPhysChem, vol. 15, pp. 208-218, (2014), doi: 10.1002/cphc.201300915.
[13]. Cui, Z., Bahry, T., Dazzi, A., Bui, T. T., Goubard, F., & Remita, S., “Conducting polymers synthesized by γ-radiolysis in very acidic aqueous medium”, Radiation Physics and Chemistry, vol. 159, pp. 47-56, (2019), doi: 10.2016/j.radphyschem.2019.02.026.
[14]. Spinks, J.W.T., Woods, R.J., “An Introduction to Radiation Chemistry”, 3. John Wiley & Sons, Inc., New York, United States, pp. 251–256, (1990).
[15]. Ferradini, C., Jay-Gerin, J.P., “Radiolysis of water and aqueous solutions-history and present state of the science”, Can. J. Chem, vol. 77, pp. 1542–1575, (1999).
[16]. Hart, E.J. “Research potentials of the hydrated electron”, Acc. Chem. Res., vol. 2, pp. 161–167, (1969), doi: 10.1021/ar50018a001.
[17]. Song, L.Y., Wang, M.Z., Cong, Y.H., Liu, W.J., Ge, X.W., Zhang, Z.C., “The mechanism of 60Co γ-ray radiation induced interfacial redox reaction in inverse emulsion and its application in the synthesis of polymer microcapsules”, Polymer, vol. 48, pp. 150–157, (2007), doi: 10.1016/j.polymer.2006.10.039.
[18]. Belloni, J., Mostafavi, M., Remita, H., Marignier, J.L., Delcourt, M.O. “Radiationinduced synthesis of mono- and multi-metallic clusters and nanocolloids”, New J. Chem., vol. 22, pp. 1239–1255, (1998), doi: 10.1039/A801445K.
[19]. Saunders, B. B., “Reactions of thiophene with radiolytically produced radicals. 2. The solvated electron and the hydrogen atom”, The Journal of Physical Chemistry, 82(2), pp. 151-154, (1978), doi: 10.1021/j100491a006.
[20]. Nguyen Ngoc Anh, Nguyen Van Chuc, Bui Hung Thang, Pham Van Nhat, NguyenVan Hao, Doan Dinh Phuong, Phan Ngoc Minh, Thiyagu Subramani, Naoki Fukata, Pham Van Trinh, “Solar Cell Based on Hybrid Structural SiNW/Poly(3,4 ethylenedioxythiophene): Poly(styrenesulfonate)/Graphene”, Global Challenges, vol. 4, (2020), doi: 10.1002/gch2.202000010
[21]. Long, L. M., Dinh, N. N., Thu, H. T., Hoa, H. T. M., & Trung, T. Q., “Synthesis and Characterization of Ag/PEDOT: PSS films used for NH3 selective sensing” Communications in Physics, vol. 26(2), pp. 173-180, (2016), doi:10.15625/0868-3166/26/2/8518.
[22]. Beiting, E. J., Zeringue, K. J., & Stickel, R. E., “Absorption spectra of thiophene between 225 and 246 nm at elevated temperatures”, Spectrochimica Acta Part A: Molecular Spectroscopy, vol. 41, pp. 1413-1418, (1985), doi: 10/1016/0584-8539(85)80196-3.
[23]. Hohnholz, D., MacDiarmid, A.G., Sarno, D.M., Jones, J.W.E., “Uniform thin films of poly-3,4-ethylenedioxythiophene (PEDOT) prepared by in-situ deposition”, Chem. Commun., pp. 2444-2445, (2001), doi: 10.1039/B107130K.
[24]. Zhao, Q., Jamal, R., Zhang, L., Wang, M.C., Abdiryim, T., “The structure and properties of PEDOT synthesized by template-free solution method”, Nanoscale Res. Lett., 9, 557, (2014), doi: 10.1186/1556-276X-9-557.
[25]. Han, M.G., Foulger, S.H., “Facile synthesis of poly(3,4-ethylenedioxythiophene) nanofibers from an aqueous surfactant solution”, Small, vol. 2, pp. 1164-1169, (2006), doi: 10.1002/smll.200600135.